Category: Production Process Component

Separator Operating Pressure

{0 Comments}

The choice of separator operating pressures in a multistage system is large. For large facilities many options should be investigated before a final choice is made. For facilities handling less than 50,000 bpd, there are practical constraints that help limit the options. A minimum pressure for the lowest pressure stage would be in the 25 …

Read More…

Fields With Different Flowing Tubing Pressures

{0 Comments}

The discussion to this point has focused on a situation where all the wells in a field produce at roughly the same flowing tubing pressure, and stage separation is used to maximize liquid production and minimize compressor horsepower. Often, as in our example flowsheet, stage separation is used because different wells producing to the facility …

Read More…

Selection of Stages

{0 Comments}

As more stages are added to the process there is less and less incremental liquid recovery. The diminishing income for adding a stage must more than offset the cost of the additional separator, piping, controls, space, and compressor complexities. It is clear that for each facility there is an optimum number of stages. In most …

Read More…

Stage Separation

{0 Comments}

Figure 2-5 deals with a simple single-stage process. That is, the fluids are flashed in an initial separator and then the liquids from that separator are flashed again at the stock tank. Traditionally, the stock tank is not normally considered a separate stage of separation, though it most assuredly is. Figure 2-6 shows a three-stage …

Read More…

Initial Separator Pressure

{0 Comments}

Because of the multicomponent nature of the produced fluid, the higher the pressure at which the initial separation occurs, the more liquid will be obtained in the separator. This liquid contains some light components that vaporize in the stock tank downstream of the separator. If the pressure for initial separation is too high, too many …

Read More…

Wellhead and Manifold

{0 Comments}

The production system begins at the wellhead, which should include at least one choke, unless the well is on artificial lift. Most of the pressure drop between the well flowing tubing pressure (FTP) and the initial separator operating pressure occurs across this choke. The size of the opening in the choke determines the flow rate, …

Read More…

Flow Control

{0 Comments}

It is very rare that flow must be controlled in an oil field process. Normally, the control of pressure, level, and temperature is sufficient. Occasionally, it is necessary to assure that flow is split in some controlled manner between two process components in parallel, or perhaps to maintain a certain critical flow through a component. …

Read More…

Temperature Control

{0 Comments}

The way in which the process temperature is controlled varies. In a heater, a temperature controller measures the process temperature and signals a fuel valve to either let more or less fuel to the burner. In a heat exchanger the temperature controller could signal a valve to allow more or less of the heating or …

Read More…

Level Control

{0 Comments}

It is also necessary to control the gas/liquid interface or the oil/water interface in process equipment. This is done with a level controller and liquid dump valve. The most common form of level controller is a float, although electronic sensing devices can also be used. If the level begins to rise, the controller signals the …

Read More…

Pressure Control

{0 Comments}

The hydrocarbon fluid produced from a well is made up of many components ranging from methane, the lightest and most gaseous hydrocarbon, to some very heavy and complex hydrocarbon compounds. Because of this, whenever there is a drop in fluid pressure, gas is liberated. Therefore, pressure control is important. The most common method of controlling …

Read More…