To produce methanol in a single-train plant from natural gas or oil-associated gas with capacities up to 10,000 mtpd. It is also well suited to increase capacities of existing steam-reforming-based methanol plants.
Natural gas is preheated and desulfurized. After desulfurization, the gas is saturated with a mixture of preheated process water from the distillation section and process condensate in the saturator. The gas is further preheated and mixed with steam as required for the pre-reforming process. In the pre-reformer, the gas is converted to H2, CO2 and CH4. Final preheating of the gas is achieved in the fired heater. In the autothermal reformer, the gas is reformed with steam and O2. The product gas contains H2, CO, CO2 and a small amount of unconverted CH4 and inerts together with under composed steam. The reformed gas leaving the autothermal reformer represents a considerable amount of heat, which is recovered as HP steam for preheating energy and energy for providing heat for the reboilers in the distillation section.
The reformed gas is mixed with hydrogen from the pressure swing adsorption (PSA) unit to adjust the synthesis gas composition. Synthesis gas is pressurized to 5 –10 MPa by a single-casing synthesis gas compressor and is mixed with recycle gas from the synthesis loop. This gas mixture is preheated in the trim heater in the gas-cooled methanol reactor. In the Lurgi water-cooled methanol reactor, the catalyst is fixed in vertical tubes surrounded by boiling water. The reaction occurs under almost isothermal condition, which ensures a high conversion and eliminates the danger of catalyst damage from excessive temperature. Exact reaction temperature control is done by pressure control of the steam drum generating HP steam.
The “preconverted” gas is routed to the shell side of the gascooled methanol reactor, which is filled with catalyst. The final conversion to methanol is achieved at reduced temperatures along the optimum reaction route. The reactor outlet gas is cooled to about 40°C to separate methanol and water from the gases by preheating BFW and recycle gas. Condensed raw methanol is separated from the unreacted gas and routed to the distillation unit. The major portion of the gas is recycled back to the synthesis reactors to achieve a high overall conversion. The excellent performance of the Lurgi combined converter (LCC) methanol synthesis reduces the recycle ratio to about 2. A small portion of the recycle gas is withdrawn as purge gas to lessen inerts accumulation in the loop.
In the energy-saving three-column distillation section, low-boiling and high-boiling byproducts are removed. Pure methanol is routed to the tank farm, and the process water is preheated in the fired heater and used as makeup water for the saturator.
Licensor: Lurgi GmbH, a member of the Air Liquide Group