The problem we have been discussing—loss of tray efficiency due to low vapor velocity—is commonly called turndown. It is the opposite of flooding, which is indicated by loss of tray efficiency at high vapor velocity. To discriminate between flooding and weeping trays, we measure the tower pressure drop. If the pressure drop per tray, expressed in inches of liquid, is more than three times the weir height, then the poor fractionation is due to flooding. If the pressure drop per tray is less than the height of the weir, then poor fractionation is due to weeping or dumping.
One way to stop trays from leaking or weeping is to increase the reflux rate. Assuming that the reboiler is on automatic temperature control, increasing the reflux flow must result in increased reboiler duty. This will increase the vapor flow through the trays and the dry tray pressure drop. The higher dry tray pressure drop may then stop tray deck leakage. The net effect is that the higher reflux rate restores the tray efficiency.
However, the largest operating cost for many process units is the energy supplied to the reboilers. We should therefore avoid high reflux rates, and try to achieve the best efficiency point for distillation tower trays at a minimum vapor flow. This is best done by designing and installing the tray decks and outlet weirs as level as possible. Damaged tray decks should not be reused unless they can be restored to their proper state of levelness, which is difficult, if not impossible.