Application: Topsøe’s two-stage hydrodesulfurization hydrodearomatization (HDS/HDA) process is designed to produce low-aromatics distillate products. This process enables refiners to meet the new, stringent standards for environmentally friendly fuels.
Products: Ultra-low sulfur, ultra-low nitrogen, low-aromatics diesel, kerosine and solvents (ultra-low aromatics).
Description: The process consists of four sections: initial hydrotreating, intermediate stripping, final hydrotreating and product stripping. The initial hydrotreating step, or the “first stage” of the two-stage reaction process, is similar to conventional Topsøe hydrotreating, using a Topsøe high-activity base metal catalyst such as TK-575 BRIM to perform deep desulfurization and deep denitrification of the distillate feed. Liquid effluent from this first stage is sent to an intermediate stripping section, in which H2S and ammonia are removed using steam or recycle hydrogen. Stripped distillate is sent to the final hydrotreating reactor, or the “second stage.” In this reactor, distillate feed undergoes saturation of aromatics using a Topsøe noble metal catalyst, either TK-907/TK-911 or TK-915, a high-activity dearomatization catalyst. Finally, the desulfurized, dearomatized distillate product is steam stripped in the product stripping column to remove H2S, dissolved gases and a small amount of naphtha formed.
Like the conventional Topsøe hydrotreating process, the HDS/HDA process uses Topsøe’s graded bed loading and high-efficiency patented reactor internals to provide optimum reactor performance and catalyst use leading to the longest possible catalyst cycle lengths. Topsøe’s high efficiency internals have a low sensitivity to unlevelness and are designed to ensure the most effective mixing of liquid and vapor streams and maximum utilization of catalyst. These internals are effective at high liquid loadings, thereby enabling high turndown ratios. Topsøe’s graded-bed technology and the use of shape-optimized inert topping and catalysts minimize the build-up of pressure drop, thereby enabling longer catalyst cycle length.
Operating conditions: Typical operating pressures range from 20 to 60 barg (300 to 900 psig), and typical operating temperatures range from 320°C to 400°C (600°F to 750°F) in the first stage reactor, and from 260°C to 330°C (500°F to 625°F) in the second stage reactor. An example of the Topsøe HDS/HDA treatment of a heavy straight-run gas oil feed is shown below:
Feed Product
Specific gravity 0.86 0.83
Sulfur, ppmw 3,000 1
Nitrogen, ppmw 400 <1
Total aromatics, wt% 30 <10
Cetane index, D-976 49 57
Licensor: Haldor Topsøe A/S.